Математика и рисование как они связаны

СТРУКТУРА ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

Железнодорожный транспорт представляет собой сложное многоотраслевое хозяйство, в состав которого входят железные дороги, предприятия, административно-хозяйственные, культурно-бытовые и медицинские учреждения, научно-исследовательские институты, вузы, техникумы, школы.

Для осуществления перевозочного процесса железные дороги располагают техническими средствами, включающими в себя подвижной состав и инфраструктуру, в которую входят:

железнодорожный путь с необходимым путевым развитием в раздельных пунктах для приема, скрещения, обгона, расформирования, формирования и отправления поездов и выполнения других операций;

сооружения для посадки, высадки и обслуживания пассажиров;

устройства для хранения, погрузки и выгрузки грузов;

устройства сигнализации, централизации и блокировки, информационные комплексы для обеспечения безопасности движения поездов и ускорения производственных процессов;

сооружения для экипировки и ремонта локомотивов и вагонов;

устройства электроснабжения, в том числе тяговые подстанции и контактная сеть на электрифицированных линиях;

устройства водоснабжения;

устройства материально-технического снабжения. Специфике работы железных дорог, связанной с размещением их по всей территории страны, необходимостью обеспечения регулярного движения поездов при любых условиях и четкого взаимодействия всех звеньев железнодорожного конвейера, свойственна особая структура управления, организованная по производственно-территориальному принципу. Благодаря этому обеспечиваются конкретность руководства и возможность проведения единой технологической политики на всей сети железных дорог страны.

Единое централизованное руководство работой железнодорожного транспорта осуществляет ОАО «РЖД» во главе с советом директоров. Совету директоров подчиняется правление ОАО «РЖД» во главе с президентом акционерного общества.

Вся железнодорожная сеть России разделена на 17 дорог, представляющих собой филиалы ОАО «РЖД». Кроме железных дорог филиалами ОАО «РЖД» являются перевозочные компании «Трансконтейнер», «Рефсервис», Федеральная пассажирская дирекция, Главный вычислительный центр (ГВЦ) и др.

В состав ОАО «РЖД» вошли ряд научно-исследовательских, проектно-конструкторских организаций и внедренческих центров, в их числе Всероссийский научно-исследовательский и проектно-конструкторский институт информатизации, автоматизации и связи (ВНИИАС), Всероссийский научно-исследовательский институт железнодорожного транспорта (ВНИИЖТ), Государственный институт технико-экономических изысканий и проектирования железнодорожного транспорта (ГипротрансТЭИ), проектно-изыска-тельские институты железных дорог (желдорпроекты).

В составе ОАО «РЖД» образовано свыше 30 департаментов и управлений, которые руководят в оперативном и техническом отношениях деятельностью железных дорог по следующим отраслям: автоматика и телемеханика, вагонное хозяйство, дальние пассажирские перевозки, коммерческая работа в сфере грузовых перевозок, локомотивное хозяйство, управление перевозками, электрификация и электроснабжение и др. В управлениях железных дорог имеются службы и отделы по отраслям, в основном соответствующие департаментам ОАО «РЖД».

Структурными подразделениями железных дорог являются отделения, которые руководят всей производственнохозяйственной деятельностью отраслевых структурных единиц - станций, локомотивных и вагонных депо, дистанций пути, служб электроснабжения, автоматики и телемеханики и др. Там, где нет отделений, предприятия подчиняются непосредственно управлению дороги через соответствующие службы.

На ряде дорог функции отдельных служб частично или полностью передаются государственным унитарным предприятиям и филиалам дорог без статуса юридического лица.

Поэтапное реформирование железнодорожного транспорта в период до 2010 г. предусматривает соответствующие изменения в системе управления отраслью.

ГАБАРИТЫ

Для безопасного движения поездов необходимо, чтобы локомотивы, вагоны и грузы на открытом подвижном составе могли свободно проходить мимо устройств и сооружений, расположенных вблизи пути, не задевая их, а также мимо следующего по соседним путям подвижного состава. Это требование обеспечивается габаритом приближения строений и габаритом подвижного состава.

Габаритом приближения строений называется предельное поперечное (перпендикулярное оси пути) очертание, внутрь которого, помимо подвижного состава, не должны входить никакие части сооружений и устройств. Исключение составляют лишь те устройства, которые предназначены для непосредственного взаимодействия с подвижным составом (вагонные замедлители в рабочем состоянии, контактные провода с деталями крепления, поворачивающаяся часть колонки при наборе воды и др.).

Габаритом подвижного состава называется предельное поперечное (перпендикулярное оси пути) очертание, в котором, не выходя наружу, должен помещаться как груженый, так и порожний подвижной состав, расположенный на прямом горизонтальном пути.

Габарит приближения строений С применяется при строительстве новых линий, постройке вторых путей, электрификации железных дорог и других видах реконструкции общей сети и подъездных путей (от станции их примыкания до территории предприятия).


Габаритные расстояния по высоте измеряют от уровня верха головки рельса, горизонтальные расстояния - от оси пути. Очертание I-II-III установлено для перегонов и путей на станциях (в пределах искусственных сооружений), на которых не предусматривается стоянка подвижного состава, очертание Iа-IIа-IIIа-IVa - для остальных путей станций. Высота габарита указана на рисунке дробью: числитель - для контактной подвески с несущим тросом, знаменатель - без него. Ширина габарита приближения строений С составляет 4900 мм.

В габарите для перегонов на расстоянии от оси пути 1745 мм предусмотрен скос высотой 1070 мм от уровня верха головки рельса для перил на мостах, эстакадах и других искусственных сооружениях.

Расстояние от оси пути до линии приближения строений (вновь строящиеся здания, заборы, опоры контактной сети и линий связи) составляет 3100 мм.

Государственным стандартом установлен также габарит Сп, отличающийся от габарита С отдельными размерами (например, высота для габарита Сп равна 5500 мм). Требованиям этого габарита должны удовлетворять сооружения и устройства депо, мастерских, грузовых районов, складов, портов, промышленных предприятий, а также между территориями этих предприятий, т. е. там, где скорости движения сравнительно невысоки.


Подвижной состав габарита 1-Т допускается к обращению по всем путям общей сети железных дорог, подъездным путям и путям промышленных предприятий, а подвижной состав габарита Т - по путям общей сети железных дорог, подъездным путям промышленных предприятий, сооружения и устрой-ства на которых отвечают требованиям габаритов С (с очертанием верхней части для неэлектрифицированных линий) и Сп.

Габариты 1-ВМ, 0-ВМ, 02-ВМ и 03-ВМ установлены для подвижного состава, допускаемого к обращению по железным дорогам колеи как 1520 (1524), так и 1435 мм.

Расстояния между осями смежных путей определяются условиями обеспечения безопасности движения поездов и личной безопасности людей, находящихся на междупутьях. При этом учитываются соответствующие размеры габаритов подвижного состава и приближения строений. Согласно ПТЭ расстояния, мм, между осями путей на прямых участках должны быть не менее указанных:

·На перегонах двухпутных линий............................................4100

·На трех- и четырехпутных линиях между осями второго и третьего путей...5000

·На станциях между осями смежных путей............................4800

·На путях второстепенных и грузовых районов.....................4500

Расстояния между осями путей на прямых участках перегона Расстояние между осями второго и третьего путей 5000 мм позволяет оставить в междупутье инвентарь и инструмент для ремонта пути при следовании поездов по этим путям.

Между осями путей, предназначенных для непосредственной перегрузки грузов из вагонов в вагон, может быть допущено расстояние 3600 мм.

В кривых участках размеры междупутья, а также расстояние между осью пути и габаритом приближения строений, зависящие от радиуса кривой, скорости движения, месторасположения пути (перегон или станция) и других факторов, устанавливаются согласно нормам, приведенным в указаниях по применению габаритов приближения строений.

Железные дороги принимают к перевозке и негабаритные грузы, которые, будучи погружены на открытый подвижной состав, выходят за пределы габарита погрузки.


Габаритом погрузки называется предельное поперечное (перпендикулярное оси пути) очертание, в котором, не выходя наружу, должен размещаться груз (с учетом упаковки и крепления) на открытом подвижном составе при нахождении его на прямом горизонтальном пути.

Негабаритные грузы могут быть перевезены при принятии специальных мер предосторожности. Для проверки габаритности грузов, погруженных на открытый подвижной состав, их пропускают через габаритные ворота. Габаритные ворота представляют собой раму, внутри которой по очертанию габарита погрузки шарнирно укреплены планки. Если открытый подвижной состав с грузом пройдет ворота, не касаясь планок, то габарит не нарушен. Изменение положения планки укажет на место, не соответствующее габариту.

В зависимости от высоты, на которой груз выходит за габарит погрузки, установлены зоны нижней, боковой и верхней негабаритности. Кроме того, для более точного определения условий пропуска грузов при наличии верхней негабаритности на двухпутных линиях дополнительно введена зона совместной боковой и верхней негабаритности.

Порядок определения негабаритности грузов, приема их к перевозке и погрузке, отправления и следования поездов изложен в Инструкции по перевозке негабаритных и тяжеловесных грузов по железным дорогам колеи 1520 мм.

ОБЩИЕ СВЕДЕНИЯ О ЖЕЛЕЗНОДОРОЖНОМ ПУТИ

Трасса, план и продольный профиль пути

Трасса железнодорожной линии характеризует положение в пространстве продольной оси пути на уровне бровок земляного полотна. Проекция трассы на горизонтальную плоскость называется планом, а развертка трассы на вертикальную плоскость - продольным профилем линии.

Полоса земли вдоль трассы, отведенная для размещения железнодорожного пути и других устройств железной дороги, а также железнодорожных поселков и лесонасаждений, носит название полосы отвода.

Процесс прокладки трассы в ходе проектирования называется трассированием линии. Идеальной была бы трасса, представляющая собой прямую в плане и пологий спуск в грузовом направлении - в профиле. Однако это не всегда возможно из-за необходимости подхода к населенным пунктам, обхода естественных препятствий (горы, озера, болота и т.п.), наличия неровностей земной поверхности и стремления удешевить строительство линии. Поэтому план железнодорожной линии проектируют в виде сочетания прямолинейных участков и кривых, а продольный профиль - в виде горизонтальных участков, называемых площадками, и наклонных, именуемых уклонами.


Профиль железнодорожной линии

Кривые малого радиуса вызывают необходимость снижения скорости движения и удлинения линии, повышают сопротивление движению, боковой износ рельсов и колес подвижного состава, ухудшают видимость. Плохая видимость в кривых малого радиуса затрудняет ведение поездов машинистами локомотивов, требует привлечения дополнительного числа сигналистов для обеспечения безопасности при выполнении работ по содержанию и ремонту пути и контактной сети. Поэтому при проектировании новых железных дорог в зависимости от категории линии и местных условий выбирают радиусы кривых, в зависимости от категории железнодорожных линий.

Продольный профиль линии характеризуется крутизной уклонов его элементов и их длиной. Крутизна i, измеряемая в тысячных долях, представляет собой частное от деления разности h отметок конечных точек элемента профиля на его длину l, т. е. равна тангенсу угла наклона а элемента профиля к горизонту.


От крутизны уклона зависит масса поезда, поэтому при проектировании железных дорог стремятся обеспечить возможно меньшее ее значение.

Одним из основных параметров железнодорожной линии является ее руководящий уклон, представляющий собой наибольший затяжной подъем, по величине которого устанавливают норму массы поезда при одиночной тяге и минимальной расчетной скорости движения. В сложных топографических условиях, когда на протяжении не менее перегона уклон местности значительно превышает руководящий, применяют так называемый уклон кратной тяги, который поезд расчетной массы проходит с несколькими локомотивами.

Значение пути в работе железных дорог, его основные элементы

Железнодорожный путь - это комплекс инженерных сооружений, предназначенный для пропуска по нему поездов с установленной скоростью. От состояния пути зависят непрерывность и безопасность движения поездов, а также эффективность использования технических средств железных дорог.

К путевому хозяйству железнодорожного транспорта относятся собственно путь со всеми его сооружениями и устройствами, а также комплекс производственных подразделений и хозяйственных предприятий, предназначенных для обеспечения бесперебойной работы железнодорожного пути и проведения его планово-предупредительного ремонта. Структурными подразделениями путевого хозяйства являются дистанции пути, дистанции лесозащитных насаждений и путевые машинные станции.

Путевое хозяйство - одна из наиболее важных отраслей железнодорожного транспорта, от которой в значительной мере зависит выполнение перевозочного процесса. Удельный вес путевого хозяйства в системе железнодорожного транспорта весьма значителен: на его долю приходится более 50 % всех основных средств железных дорог и свыше 20 % общей численности работников.

Железнодорожный путь состоит из нижнего и верхнего строений. Нижнее строение пути включает в себя земляное полотно (насыпи, выемки, полунасыпи, полувыемки, полунасыпи-полувыемки) и искусственные сооружения (мосты, тоннели, трубы, подпорные стены и др.). К верхнему строению пути относятся балластный слой, шпалы, мостовые и переводные брусья, рельсы, рельсовые скрепления, противоугоны, стрелочные переводы, глухие пересечения.

Железнодорожный путь функционирует при различных погодных условиях, воспринимая большие нагрузки от проходящих поездов. При этом согласно ПТЭ все элементы железнодорожного пути (земляное полотно, верхнее строение и искусственные сооружения) по прочности, устойчивости и техническому состоянию должны обеспечивать безопасное и плавное движение пассажирских и грузовых поездов со скоростями, установленными на данном участке.

Для выполнения указанных требований постоянно проводятся работы по усилению несущей способности и надежности всех элементов пути: широко применяются термически упрочненные рельсы тяжелых типов, новые конструкции рельсовых скреплений, бесстыковой путь, железобетонные шпалы, новые конструкции стрелочных переводов и др.

Земляное полотно и его поперечные профили. Водоотводные устройства

Земляное полотно представляет собой комплекс грунтовых сооружений, получаемых в результате обработки поверхности земли и предназначенных для укладки верхнего строения пути, обеспечения устойчивости пути и защиты его от воздействия атмосферных и грунтовых вод. Непосредственно на поверхность земли путь не укладывают из-за наличия неровностей.

Земляное полотно должно быть прочным, устойчивым и долговечным, требующим минимальных расходов на его устройство, содержание математика и ремонт и обеспечивающим возможность механизации работ. Выполнение указанных требований достигается правильным выбором грунтов для насыпей и их тщательным уплотнением, приданием земляному полотну очертаний, способствующих надежному отводу воды, укреплением откосов насыпей и выемок.

Разрез, перпендикулярный продольной оси пути, называется поперечным профилем земляного полотна. В зависимости от формы поперечного профиля земляное полотно может представлять собой насыпь, выемку, полунасыпь, полувыемку или полунасыпь-полувыемку.



На двух- и многопутных линиях ширина основной площадки увеличивается на расстояние между осями крайних путей (на двухпутных линиях - на 4,1 м, а на трехпутных - на 9,1 м).

Полоса земли, на которую опирается насыпь, является ее основанием. Линия пересечения основной площадки с откосом называется бровкой земляного полотна, а откоса с основанием - подошвой откоса. Высотой насыпи считается расстояние от уровня бровок до ее основания по оси.

Отвод поверхностных вод от насыпей, сооружаемых из привозного грунта, осуществляется с помощью продольных водоотводных канав шириной (по дну) и глубиной не менее 0,6 м, которые при поперечном уклоне местности до 0,04 сооружаются с обеих сторон, а при большем уклоне - только с нагорной стороны.

Если насыпь возводится из местного грунта, находящегося рядом с ней, то для отвода воды от полотна используются образующиеся при этом спланированные углубления, называемые резервами. Дну резервов и водоотводных канав придают продольный уклон не менее 0,002.

Полоса земли от подошвы откоса до водоотводной канавы или резерва называется бермой. Со стороны будущего второго пути на однопутных линиях ширина бермы составляет не менее 7,1 м, а с противоположной стороны - не менее 3 м. Для обеспечения отвода воды от насыпи берма имеет уклон 0,02...0,04.

Типовой поперечный профиль выемки приведен на рис.9. Основная площадка выемки имеет такие же размеры, как у насыпи. С каждой стороны основной площадки земляного полотна в выемках создают продольные канавы для отвода воды, называемые кюветами. Они характеризуются следующими минимальными значениями параметров: глубина 0,6 м, ширина (по дну) 0,4 м и продольный уклон дна 0,002.

Удаленный при сооружении выемки грунт, не используемый для создания насыпи в другом месте, укладывают за откосом выемки с нагорной стороны в правильные призмы, называемые кавальерами. Для перехвата и отвода притекающих к выемке поверхностных вод за кавальерами сооружают нагорные канавы, а на полосе между кавальером и бровкой откоса выемки отсыпают банкет с поперечным уклоном в сторону от откоса для отвода воды в забанкетную канаву.

В неустойчивых грунтах, а также в стесненных условиях вместо водоотводных канав и кюветов устраивают лотки, которые могут быть железобетонными, бетонными, каменными или деревянными, а по форме - трапецеидальными, прямоугольными, полукруглыми и треугольными.

Искусственные сооружения, их виды и назначение

Искусственные сооружения обеспечивают возможность пересечения железной дорогой водных преград, других железнодорожных линий, автодорог, глубоких ущелий, горных хребтов, застроенных городских территорий, а также безопасный переход людей через пути и устойчивость земляного полотна в сложных геологических и гидрологических условиях.

К искусственным сооружениям относятся мосты, трубы, тоннели, подпорные стены, регуляционные сооружения, галереи, селе-спуски и др. При пересечении железной дорогой рек, каналов, ручьев и оврагов создают мосты или трубы.

Мост состоит из пролетных строений, являющихся основанием для пути, и опор, поддерживающих пролетные строения и передающих давление на грунт.

Береговые опоры моста называют устоями, а промежуточные - быками. Мост разделяется опорами на пролеты. Пролетное строение включает в себя главные фермы, соединяющие их конструкции, проезжую часть и мостовое полотно. В фермах различают верхний и нижний пояса, к одному из которых прикрепляют поперечные балки, а к ним - продольные балки, образующие проезжую часть.

Если проезжая часть располагается на уровне верхнего пояса, мост называют с ездой поверху, если на уровне нижнего - с ездой понизу; кроме того, может быть конструкция моста с ездой посередине. Разновидностями мостов являются путепроводы, виадуки и эстакады.

Путепроводы строят в местах пересечения железных и автомобильных дорог или двух железнодорожных линий. Они обеспечивают независимый и безопасный пропуск транспорта благодаря пересечению дорог на разных уровнях.

Виадуки сооружают вместо обычной высокой насыпи при пересечении железной дорогой глубоких долин, оврагов и ущелий.

Эстакады создают вместо больших насыпей в городах, где они меньше стесняют улицы и обеспечивают проезд и проход под ними, а также возводят на подходах к большим мостам через реки с широкими поймами при разливе воды.

Трубы применяют при пересечении железной дорогой небольших водотоков или суходолов. По виду материала различают каменные, металлические, бетонные и железобетонные трубы.

При пересечении горных хребтов вместо глубоких выемок сооружают тоннели. Их создают и для безопасного перехода людей через железнодорожные пути на станциях и остановочных пунктах пригородных поездов.

Тоннель представляет собой искусственное сооружение для прокладки пути под землей. Транспортные тоннели по их месторасположению разделяют на горные, подводные и городские. Пространство, образовавшееся после удаления породы при сооружении тоннеля, называется тоннельной выработкой, а конструкция, служащая для ее закрепления, - обделкой. В слабых грунтах во избежание обвала в тоннелях несущую обделку обычно выполняют из железобетона или бетона, а в тяжелых гидрогеологических условияхиз металла.

Для обеспечения устойчивости откосов земляного полотна на крутых косогорах, берегах рек и морей служат подпорные стены, а при подходах к большим мостам для защиты их опор от подмыва при паводках и повреждения льдом - регуляционные сооружения, состоящие из водонаправляющих грушевидных и шпоровидных дамб и траверс, откосы которых со стороны реки укрепляют каменным мощением или бетонными плитами.

В горах, в местах возможных обвалов, сооружают специальные галереи, а в местах возможного схода грязекаменных (селевых) потоков - селеспуски.

Наиболее распространенными видами искусственных сооружений являются мосты и трубы (более 92 %). Протяженность искусственных сооружений составляет в среднем менее 1,5 % общей длины пути, однако их доля в стоимости железной дороги равна почти 10 %, поэтому их проектируют в расчете на длительный срок службы. Необходимо, чтобы они были простыми и дешевыми в эксплуатации и вместе с тем обеспечивали безопасное и бесперебойное движение поездов с наибольшей скоростью, установленной для данного участка.

ВЕРХНЕЕ СТРОЕНИЕ ПУТИ

Верхнее строение пути служит для направления движения подвижного состава, восприятия силовых воздействий от его колес и передачи их на нижнее строение.

Верхнее строение пути представляет собой комплексную конструкцию, включающую в себя балластный слой, шпалы, рельсы, рельсовые скрепления, противоугоны, стрелочные переводы, глухие пересечения, мостовые и переводные брусья. Рельсы, соединенные со шпалами, образуют рельсошпальную (путевую) решетку. При этом шпалы заглубляются в балластный слой, укладываемый на основную площадку земляного полотна.

Толщина балластного слоя и расстояние между шпалами должны быть такими, чтобы давление на земляное полотно не превышало величины, обеспечивающей его упругую осадку, исчезающую после снятия нагрузки.

Верхнее строение пути, подверженное воздействию неблагоприятных факторов (проходящие поезда, атмосферные осадки, ветер, колебания температуры), должно быть достаточно прочным, устойчивым, долговечным и экономичным.


Балластный слой

Основным назначением балластного слоя является восприятие давления от шпал и равномерное распределение его по основной площадке земляного полотна; обеспечение устойчивости шпал, находящихся под воздействием вертикальных и горизонтальных сил, упругости подрельсового основания и возможности выравнивания рельсошпальной решетки в плане и профиле; отвод от нее поверхностных вод. Во избежание переувлажнения основной площадки вода не должна задерживаться на поверхности балластного слоя.

Материал для балласта должен быть прочным, упругим, устойчивым под нагрузкой и атмосферными воздействиями, а также дешевым. Кроме того, он не должен дробиться при уплотнении, пылить при проходе поездов, раздуваться ветром, размываться дождями и прорастать травой. В качестве балласта используют сыпучие, хорошо дренирующие упругие материалы: щебень, гравий, песок, ракушечник. Лучшим материалом для балласта является щебень из естественного камня, валунов и гальки.

Путевой щебень, применяемый на железных дорогах России, выпускают в виде двух основных фракций с размерами частиц 25... 60 математика и рисование как они связаны и 25... 50 мм. Для балластировки станционных путей и применения в качестве строительного материала стандартом предусмотрен также мелкий щебень с размерами частиц 5...25 мм.

Балластный слой укладывают в виде призмы, которая имеет откосы крутизной, как правило, 1:1,5. Ширина ее верхней части, устанавливается техническими условиями.

Шпалы

На железных дорогах России наряду с деревянными получили широкое распространение железобетонные шпалы с предварительно напряженной арматурой. Их достоинствами являются долговечность (40...50 лет), обеспечение высокой устойчивости пути и плавности хода поездов, что обусловлено одинаковыми размерами и равной упругостью шпал. Кроме того, применение железобетонных шпал позволяет сберечь древесину для других нужд. Благодаря указанным качествам они уже используются на главных путях всех основных направлений сети, в том числе на участках скоростного движения поездов.

К недостаткам железобетонных шпал относятся большая масса, наличие электропроводности, высокая жесткость и сложность крепления рельсов к ним. Для повышения упругости пути с железобетонными шпалами под рельсы укладывают амортизирующие прокладки. Во избежание утечки электрического тока применяют рельсовые скрепления специальной конструкции с электроизоляционными деталями.

Железобетонные шпалы изготавливают из тяжелого бетона с арматурой из стальной углеродистой холоднотянутой проволоки периодического профиля диаметром 3 мм.

Порядок расположения шпал по длине рельсового звена называют их эпюрой. На железных дорогах России применяют три эпюры, соответствующие укладке 1600, 1840 и 2000 шпал на 1 км пути.

На станциях метро и при устройстве смотровых канав в депо вместо сплошных шпал используются полушпалы, заглубленные в бетон.

Рельсы

Рельсы предназначены для направления движения колес подвижного состава, восприятия нагрузки от него и передачи ее на шпалы. Кроме того, на участках с автоблокировкой рельсы служат проводниками сигнального тока, а при использовании электротяги - проводниками обратного тягового тока.

Для надежной работы рельсы должны быть достаточно прочными, долговечными, износоустойчивыми, твердыми и в то же время нехрупкими, так как они воспринимают ударно-динамическую нагрузку. Материалом для их изготовления служит высокопрочная углеродистая сталь. В зависимости от массы и поперечного профиля рельсы подразделяют на несколько типов: Р50, Р65 и Р75. Буква Р означает рельс, а число - округленное значение массы, кг, одного погонного метра рельса.

Поскольку наибольшее воздействие на рельс оказывает вертикальная нагрузка, стремящаяся изогнуть его, рациональной формой рельса считается двутавровая, одновременно обеспечивающая и меньший расход металла.


Выбор того или иного типа рельсов зависит от грузонапряженности линии, нагрузок и скоростей движения поездов. На линиях скоростного движения пассажирских поездов укладывают рельсы Р65.

Рельсы выпускают стандартной длины 25 м. Кроме того, для укладки в кривых изготавливают укороченные рельсы длиной 24,92 и 24,84 м. В качестве уравнительных рельсов для бесстыкового пути, а также при укладке стрелочных переводов используют рельсы прежней стандартной длины (12,5 м) и укороченные (12,46; 12,42 и 12,38 м).

Срок службы рельсов, измеряемый числом тонн брутто проследовавшего по ним груза до их перекладки, в среднем составляет для термически упрочненных рельсов Р65 500 млн т, а для Р50 - 350 млн т. Срок службы рельсов Р75 примерно на 30 % больше, чем у рельсов Р65.

Рельсовые скрепления. Противоугоны

Рельсовый путь представляет собой две непрерывные рельсовые нити, расположенные на определенном расстоянии одна от другой благодаря креплению рельсов к шпалам и отдельных рельсовых звеньев друг к другу. Рельсы соединяют со шпалами с помощью промежуточных скреплений, которые должны обеспечивать надежную и достаточно упругую их связь, неизменную ширину колеи и необходимый уклон рельсов, не допускать их продольного смещения и опрокидывания, а при использовании железобетонных шпал помимо этого электрически изолировать рельсы и шпалы. Существуют три основных типа промежуточных скреплений: нераздельные, смешанные и раздельные.


При нераздельном скреплении рельс и подкладки, на которые он опирается, крепят к шпалам одними и теми же костылями или шурупами. При смешанном скреплении подкладки, кроме того, крепят к шпалам дополнительными костылями. Смешанное костыльное скрепление с применением клинчатых подкладок, имеющих уклон 1:20, широко распространено на дорогах нашей страны. Его достоинствами являются простота конструкции, небольшая масса, сравнительная легкость зашивки, перешивки и разборки пути. Однако такое скрепление не гарантирует постоянства ширины колеи и способствует механическому изнашиванию шпал.

При раздельном скреплении рельс соединяют с подкладками жесткими или упругими клеммами и клеммными болтами, а подкладки крепят к шпалам болтами или шурупами. Достоинства раздельного скрепления (возможность смены рельсов без снятия подкладок, большое сопротивление продольным усилиям, обеспечение постоянства ширины колеи) способствуют все более широкому его применению, хотя оно несколько дороже и сложнее по конструкции скреплений других видов.

На железных дорогах России широко распространено раздельное скрепление КБ-65. Его недостатками являются большое число деталей, значительная масса и высокая жесткость. Поэтому в настоящее время началось активное внедрение нового бесподкладочного пружинного раздельного скрепления пониженной жесткости - ЖБР-3-65, у которого масса и число деталей уменьшены более чем в 1,5 раза. Кроме того, разработано анкерное рельсовое скрепление АРС-4, наиболее перспективное для пути с железобетонными шпалами. Благодаря отсутствию резьбовых соединений оно не требует обслуживания, что позволяет существенно сократить затраты на содержание пути.


Рельсовые звенья соединяют друг с другом с помощью стыковых скреплений, основными элементами которых являются накладки, болты с гайками и пружинные шайбы. Стыковые накладки предназначены для восприятия в стыке изгибающих и поперечных сил. Двухголовые накладки изготавливают из высокопрочной стали и подвергают закалке. Болты, как и накладки, должны обладать высокой прочностью. Под их гайки для обеспечения постоянного натяжения подкладывают пружинные шайбы. В последнее время переходят на применение шестидырных накладок.


По расположению относительно шпал в качестве стандартных приняты стыки на весу, что обеспечивает большую упругость и удобство подбивки балласта под стыковые шпалы. Так как с изменением температуры длина рельсов меняется, между их торцами в стыках оставляют зазор, наибольшая величина которого во избежание сильных ударов колес подвижного состава не должна превышать 21 мм. Каждому значению температуры воздуха (и рельсов) соответствует определенный стыковой зазор.

Для обеспечения возможности некоторого перемещения концов рельсов в стыках болтовые отверстия в ранее изготавливавшихся рельсах имели форму овала (с большой осью, направленной вдоль рельса) или круга большего диаметра, чем у болтов. Вновь выпускаемые рельсы имеют только круглые отверстия, что повышает прочность рельсов и упрощает технологию их изготовления.

На линиях с автоблокировкой на границах блок-участков применяют изолирующие стыки, препятствующие прохождению электрического тока от одного из соединяемых рельсов к другому. В стыковой зазор помещают прокладку из текстолита или трикопа, имеющую очертания рельса. В последнее время все шире применяют клееболтовые стыки, в которых металлические стыковые накладки, изолирующие прокладки из стеклоткани и болты с изолирующими втулками соединяют с помощью эпоксидного клея с концами рельсов в монолитную конструкцию.

На линиях с электрической тягой и автоблокировкой для беспрепятственного прохождения тока через стык устанавливают специальные стыковые соединители.

Под действием сил, которые возникают при движении поездов, особенно при торможении на затяжных спусках, может происходить продольное перемещение рельсов по шпалам или вместе со шпалами по балласту, называемое угоном пути. Для предотвращения угона пути применяют противоугоны. Стандартные пружинные противоугоны представляют собой пружинную скобу, защемляемую на подошве рельса и упирающуюся в шпалу. На 25-метровом рельсовом звене устанавливают от 18 до 44 пар противоугонов.


Бесстыковой путь

В настоящее время на железных дорогах широкое распространение получил наиболее совершенный бесстыковой путь. Благодаря устранению стыков ослабляется динамическое воздействие на путь, существенно уменьшаются износ колес подвижного состава и сопротивление движению поездов, что снижает расход топлива и электроэнергии на обеспечение тяги поездов. Значительное сокращение числа стыковых скреплений посредством сварки отдельных рельсовых звеньев в плети позволяет сэкономить до 1,8 т металла на каждый километр пути, снизить расходы на его содержание и ремонт. Срок службы рельсов бесстыкового пути возрастает примерно на 20 % по сравнению со стыковым, деревянных шпал - на 8... 13%, балласта (до очистки) - на 25%, а затраты труда на текущее содержание пути снижаются на 10...30%.

Для бесстыкового пути рельсовые плети изготавливают, как правило, из термически упрочненных рельсов Р65 или Р75 стандартной длины, не имеющих болтовых отверстий. Рельсы сваривают электроконтактным способом на стационарных или передвижных контактно-сварочных машинах.

Между сварными плетями укладывают 2-4 пары уравнительных рельсов длиной 12,5 м или переменной длины (12,5; 12,46; 12,42 и 12,38 м) для сезонного регулирования длины плетей перед летними и зимними периодами. Весь комплект уложенных на путь уравнительных рельсов называется уравнительным пролетом. Для обеспечения необходимой прочности пути рельсовые стыки в уравнительных пролетах соединяют только шестидырными накладками и стыковыми болтами из стали повышенной прочности.

На первых этапах внедрения бесстыкового пути длина сварных плетей на сети железных дорог России обычно не превышала 800 м, что соответствовало длине специальных поездов, которые составляли из платформ, оборудованных роликами. Этими поездами плети доставляли на перегон. С 1986 г. после многолетних опытов разрешена укладка плетей, длина которых совпадает с длиной блок-участка и даже перегона, с введением ряда дополнительных требований к их изготовлению и эксплуатации.

Применение бесстыкового пути особенно эффективно на участках скоростного движения поездов. На этих участках к верхнему строению пути предъявляют повышенные требования, уделяя особое внимание предотвращению и устранению волнообразного износа поверхности катания рельсов, который ликвидируется их обработкой, осуществляемой специальными рельсошлифовальными поездами.

УСТРОЙСТВО РЕЛЬСОВОЙ КОЛЕИ. СТРЕЛОЧНЫЕ ПЕРЕВОДЫ

Устройство рельсовой колеи тесно связано с конструкцией и размерами колесных пар подвижного состава. Колесная пара включает в себя стальную ось, на которую наглухо насажены колеса, имеющие для предотвращения схода с рельсов направляющие гребни.

Для того чтобы каждая колесная пара не могла поворачиваться вокруг вертикальной оси, колесные пары вагона или локомотива соединяют по две и более жесткой рамой тележек. Расстояние между крайними осями колесных пар, соединенных рамой, называется жесткой колесной базой, а между крайними осями вагона или локомотива - полной колесной базой.

Жесткое соединение колесных пар обеспечивает их устойчивое положение на рельсах, но в то же время затрудняет прохождение в кривых малого радиуса, где возможно их заклинивание. Для облегчения вписывания в кривые современный подвижной состав выпускают на отдельных тележках с небольшими жесткими базами.

Поверхность катания колес подвижного состава в средней части имеет уклон 1:20, наличие которого обеспечивает их более равномерное изнашивание, повышенное сопротивление действию горизонтальных сил, направленных поперек пути, меньшую чувствительность колесных пар к его неисправностям и препятствует появлению желоба на поверхности катания, затрудняющего прохождение колесных пар по стрелочным переводам. В соответствии с этим рельсы устанавливаются также с уклоном 1:20, что при деревянных шпалах достигается за счет клинчатых подкладок, а при железобетонных - соответствующим наклоном поверхности шпал в зоне опирания рельсов.

Расстояние между внутренними гранями головок рельсов называется шириной колеи. Эта ширина складывается из расстояния между колесами (1440 мм + 3 мм), двух толщин гребней (от 25 до 33 мм) и зазоров между колесами и рельсами, необходимых для свободного прохождения колесных пар. Ширина нормальной (широкой) колеи в прямых и кривых участках пути с радиусом более 349 м, принятая в России, составляет 1520 мм с допуском в сторону уширения 8 мм, а на участках со скоростью движения до 50 км/ч - 10 мм. Допуск в сторону сужения равен 4 мм.


В соответствии с ПТЭ верхние части головок рельсов обеих нитей пути на прямых участках должны находиться на одном уровне. На всем протяжении прямых участков пути разрешается сооружать одну рельсовую нить на 6 мм выше другой.

При строительстве пути стыки на обеих рельсовых нитях располагают точно один против другого по наугольнику, что по сравнению с расположением стыков вразбежку уменьшает число ударов колесных пар о рельсы, а также позволяет заготавливать и менять рельсошпальную решетку целыми звеньями с помощью путеукладчиков.

Особенности устройства пути в кривых участках

В кривых участках устройство пути имеет ряд особенностей, основными из которых являются возвышение наружного рельса над внутренним, наличие переходных кривых, уширение колеи при малых радиусах, применение укороченных рельсов на внутренней рельсовой нити, усиление пути, увеличение расстояния между осями путей в круговых кривых двух- и многопутных линий в соответствии с требованиями габарита.

Возвышение наружного рельса предусматривается при радиусе кривой 4000 м и менее для того, чтобы нагрузка на рельсовые нити была примерно одинаковой с учетом действия центробежной силы. Величина возвышения зависит от массы поезда, скорости движения и радиуса кривой. Согласно ПТЭ максимальное возвышение наружного рельса в кривой составляет 150 мм.

Наличие переходных кривых связано с необходимостью плавного сопряжения кривой с примыкающей прямой как в плане, так и в профиле пути.

Уширение колеи обеспечивает вписывание подвижного состава в кривые. Поскольку колесные пары закреплены в раме тележки таким образом, что в пределах жесткой базы они всегда параллельны друг другу, в кривой только одна колесная пара может расположиться по радиусу, а остальные находятся под углом к нему. Это требует увеличения зазора между гребнями колес и рельсами во избежание заклинивания колесных пар.

ПТЭ установлены следующие нормативные значения ширины колеи в кривых в зависимости от радиуса кривой:

Радиус кривой, м..................Не более 299 300...349 350 и более

Ширина колеи, мм................ 1535 1530 1520

Укладка укороченных рельсов во внутреннюю рельсовую нить необходима для исключения разбежки стыков. Поскольку внутренняя нить в кривой короче наружной, применение рельсов одинаковой длины вызвало бы забегание стыков вперед на внутренней нити. Для предотвращения разбежки стыков каждому радиусу кривой должна соответствовать своя величина укорочения рельса. В целях унификации установлены стандартные укорочения рельсовых звеньев длиной 25 м - 80 и 160 мм.

Стрелочные переводы

Переход подвижного состава с одного пути на другой обеспечивают устройства по соединению и пересечению путей, относящиеся к их верхнему строению. Соединение путей друг с другом осуществляют стрелочными переводами, а пересечение путей - глухими пересечениями. Применяя стрелочные переводы и глухие пересечения, создают соединения путей, называемые стрелочными улицами и съездами.


В зависимости от назначения и условий соединения путей различают одиночные, двойные и перекрестные стрелочные переводы. Одиночные переводы подразделяют на обыкновенные, симметричные и несимметричные.

Обыкновенный стрелочный перевод, служащий для соединения двух путей, может быть право- или левосторонним. Он применяется при отклонении бокового пути от прямолинейного в ту или иную сторону. Этот вид переводов наиболее распространен. В состав стрелочного перевода входят собственно стрелка, крестовина с контррельсами, соединительная часть, расположенная между ними, и переводные брусья.

Стрелка включает в себя два рамных рельса, два остряка, предназначенные для направления подвижного состава на прямой или боковой путь, и переводной механизм.


Остряки соединяют друг с другом поперечными стрелочными тягами, с помощью которых один из них подводится вплотную к рамному рельсу, в то время как другой отводится от другого рамного рельса на расстояние, необходимое для свободного прохода гребней колес.

Перевод остряков из одного положения в другое осуществляется специальными стрелочными приводами через одну из тяг, а в пологих стрелочных переводах, остряки которых имеют значительную длину, - через две тяги и более. В приводе имеется устройство, запирающее остряки в том или ином положении и контролирующее их плотное прилегание к рамным рельсам. Тонкая часть остряка называется острием, а другой его конец - корнем. Корневое крепление обеспечивает поворот остряков в горизонтальной плоскости и соединение с примыкающими к ним рельсами.

Крестовина состоит из сердечника, двух усовиков и желобов. Она обеспечивает пересечение гребнем колес рельсовых головрк, а контррельсы направляют гребни колес в соответствующие желоба при прохождении колесной пары по крестовине. Точка пересечения продолжения рабочих граней сердечника крестовины называется ее математическим центром, а самое узкое место между усовиками - горлом крестовины. Угол а, образуемый рабочими гранями сердечника, называется углом крестовины.

Наиболее важным параметром стрелочного перевода является марка крестовины.

В зависимости от назначения пути используют стрелочные переводы с крестовинами, имеющими следующие марки:


На железных дорогах широко применяется стрелочный перевод усиленной конструкции с литой крестовиной марки 1/11 и гибкими остряками, допускающий движение поездов по прямому пути со скоростью до 160 км/ч. Существующие переводы пологой марки 1/18 применяют на маршрутах следования поездов при отклонении их с главного пути на боковое направление, где скорость движения составляет 80 км/ч.

На линии Москва-Санкт-Петербург используют стрелочные переводы с крестовиной марки 1/11, предназначенные для движения пассажирских поездов по прямому пути со скоростью 200 км/ч. Конструктивной особенностью этого перевода является наличие крестовины, имеющей гибкий подвижной сердечник). В рабочих положениях такой сердечник плотно прилегает к соответствующей боковой грани усовика крестовины, благодаря чему образуется непрерывная поверхность катания для колес подвижного состава.

Распространенными устройствами для соединения путей являются съезды. В зависимости от расположения соединяемых путей съезды бывают обыкновенные, перекрестные и сокращенные.

Обыкновенный съезд состоит из двух одиночных стрелочных переводов и соединительного пути, укладываемого между корнями их крестовин.

Перекрестный, или двойной, съезд представляет собой пересечение двух одиночных съездов. Он имеет четыре стрелочных перевода и глухое пересечение, помещаемое между корнями крестовин. Такие съезды укладывают в стесненных условиях, когда для последовательного расположения двух одиночных съездов нет участка достаточной длины.

При устройстве перекрестных съездов, а также в местах, где пути пересекаются, но перевод подвижного состава с одного из них на другой не осуществляется, выполняют глухие пересечения под прямым или острым углом. На магистральных железных дорогах получили широкое распространение глухие пересечения под острым углом с применением крестовин марок 2/9 и 2/11. Эти пересечения состоят из четырех крестовин с контррельсами, из них две крестовины острые и две тупые. У прямоугольных пересечений все крестовины одинаковые.

Путь, на котором последовательно расположены стрелочные переводы, ведущие на параллельные пути, называется стрелочной улицей. Это устройство дает возможность перемещать подвижной состав на любой из соединяемых путей. Обычно стрелочные улицы объединяют группы путей одного назначения в парки. В зависимости от расположения по отношению к основному пути и угла наклона стрелочные улицы бывают разных видов.

РЕМОНТ И ТЕКУЩЕЕ СОДЕРЖАНИЕ ПУТИ. ПУТЕВЫЕ МАШИНЫ

Работы по техническому обслуживанию пути и стрелочных переводов подразделяются на следующие виды: усиленный капитальный ремонт пути и стрелочных переводов, капитальный ремонт пути и стрелочных переводов, усиленный средний ремонт пути, средний ремонт пути, подъемочный ремонт пути, сплошная замена рельсов и металлических частей стрелочных переводов, сопровождающаяся работами в объеме среднего ремонта пути, планово-предупредительная выправка пути, шлифовка рельсов, текущее содержание пути и др.

Нормы периодичности ремонта, выраженные в млн т брутто грузов, перевезенных по данному участку, а также схемы чередования ремонтов устанавливают в зависимости от класса, группы и категории пути.

Усиленный капитальный ремонт пути предназначен для комплексного обновления верхнего строения пути на путях первого и второго классов, а стрелочных переводов - на путях первого - третьего классов. При проведении усиленного капитального ремонта пути выполняют работы, связанные с заменой рельсошпальной решетки новой, заменой стрелочных переводов, ремонтом водоотводов, повышением несущей способности земляного полотна в местах деформаций, выправкой и подбивкой пути с учетом его проектной отметки в профиле, выправкой кривых в плане с восстановлением проектных радиусов, приведением переходных кривых и прямых вставок между ними в соответствие с максимальными значениями скорости движения, установленными на участке, планировкой балластной призмы, срезкой обочины земляного полотна, и другие работы, предусмотренные проектом ремонта.

Капитальный ремонт пути предназначен для замены рельсошпальной решетки на путях третьего-пятого классов более мощной или менее изношенной, смонтированной либо полностью из старогодных материалов, либо из таких материалов в сочетании с новыми, а также для замены стрелочных переводов на путях четвертого и пятого классов.

При капитальном ремонте пути выполняют фактически те же виды работ, что и при усиленном капитальном ремонте.

Усиленный средний ремонт пути предназначен для повышения несущей способности балластной призмы и земляного полотна, включая основную площадку. Его выполняют на участках, где при капитальном (в том числе усиленном) ремонте пути был уложен слой щебня под шпалами меньшей толщины, чем предусмотрено нормами, не было проведено замены одного вида балласта другим или упрочнения основной площадки земляного полотна.

При усиленном среднем ремонте пути очищают щебеночную призму, уширяют основную площадку земляного полотна, срезают обочины, ликвидируют пучины, восстанавливают и ремонтируют водоотводы, дренажные устройства и т.д.

Сопутствующие работы при усиленном среднем ремонте пути включают в себя замену негодных шпал, брусьев и скреплений, выправку круговых и переходных кривых в профиле и плане, ремонт переездов, водоотводных и укрепительных сооружений и др.

Средний ремонт пути предназначен для сплошной очистки щебеночной балластной призмы, замены дефектных шпал и элементов скреплений, а также проведения планово-предупредительной выправки пути. При этом выполняют те же сопутствующие работы, что и при усиленном среднем ремонте.

Подъемочный ремонт пути связан с восстановлением равноупругости подшпального основания путем сплошной подъемки и выправки пути с подбивкой шпал, замены негодных деревянных шпал и частичного восстановления дренирующих свойств балласта.

Сплошная замена рельсов и металлических частей стрелочных переводов новыми или старогодными выполняется с целью усиления рельсов и стрелочных переводов и сопровождается сопутствующими работами в объеме среднего или подъемочного ремонта пути. После сплошной замены рельсов должна проводиться их шлифовка.

Планово-предупредительная выправка пути предназначена для восстановления равноупругости подшпального основания, снижения степени неравномерности отклонения его уровня от проектного и уменьшения просадки пути. При этом проводят сплошную выправку пути с подбивкой шпал, заменяют неисправные рельсовые скрепления, регулируют стыковые зазоры и выполняют другие виды работ.

Шлифовка рельсов, осуществляемая рельсошлифовальными поездами, бывает двух видов: профильная, при которой головка рельса шлифуется по всему ее периметру, и предназначенная для устранения волнообразного износа и коротких неровностей других видов на поверхности катания рельсов с целью уменьшения вибрационного воздействия подвижного состава на путь.

Текущее содержание пути - один из наиболее важных видов путевых работ, осуществляемых непрерывно в течение всего года с целью предупреждения расстройств пути, выявления и устранения неисправностей и вызвавших их причин, а также обеспечения постоянной исправности всех элементов пути. К работам по текущему содержанию пути относятся систематический надзор за путем, сооружениями и путевыми устройствами и содержание их в состоянии, гарантирующем безопасное и бесперебойное движение с максимально допустимой скоростью.

Для выполнения работ по ремонту и текущему содержанию пути в графике движения поездов должны предусматриваться «окна», т. е. перерывы в движении продолжительностью 2... 8 ч.

Ремонт и текущее содержание пути осуществляют с помощью высокопроизводительных путевых машин, обеспечивающих комплексную механизацию путевых работ. Для перевозки и механизированной разгрузки балласта с его одновременным дозированием и разравниванием используют специальные вагоны - хоппер-дозаторы.

Для дозирования ранее выгруженного балласта и подъемки пути на заданную высоту применяют электробалластеры, планировщики и распределители балласта. Щебеночный балласт очищают щебнеочистительными машинами ЩОМ-4М, -1200, СЧ-600, -601, -1200, СЧУ-801 и ОТ-400С без снятия путевой решетки. Для уборки балласта от концов шпал служат уборочные машины УМ-С и -М.

Выправку пути в продольном и поперечном направлениях, уплотнение балласта под шпалами, рихтовку и отделку пути при его обновлении и капитальном ремонте осуществляют отечественными выправочно-подбивочно-отделочными машинами ВПО-3-3000 производительностью до 3000 м/ч, а также российско-австрийскими машинами Duomatic 09-32 CSM. При текущем содержании пути и выполнении основных работ среднего и подъемочного ремонта подбивку шпал и рихтовку пути проводят с помощью выправочно-подбивочно-рихтовочных машин ВПР-02 и -03.

Для выправки стрелочных переводов применяют машины ВПРС-02 и -03, а также новые машины Unimat-08-275 3S. Выправку откосов земляного полотна и нарезку кюветов осуществляют с использованием словацких машин СЗП-600 и отечественных МНК-1. Для срезания поросли применяют кусторезные машины СП-93. Ускорение стабилизации пути после очистки и уплотнения балласта обеспечивают машины ДСП-С4.

Разборку старой и укладку новой путевой решетки отдельными звеньями выполняют с использованием комплектов разборочно-укладочных средств, включающих в себя два путеукладочных крана УК-25, два состава платформ, оборудованных роликами для перемещения пакетов с рельсовыми звеньями, моторные платформы, применяемые для перемещения пакетов вдоль состава и в качестве тяговых единиц.

Для электроконтактной сварки рельсов предназначены передвижные рельсосварочные машины ПРСМ-4 и -5, а для шлифовки рельсов - рельсошлифовальные поезда РШП-48.

При выполнении работ по текущему содержанию и ремонту пути широко используют электрифицированный и гидравлический инструмент. К электрифицированному инструменту относятся электрошпалоподбойки, электрические гаечные ключи, шуруповерты, рельсосверлильные, рельсорезные и рельсошлифовальные станки, к гидравлическому - домкраты, рихтовочные приборы и приборы для разгонки зазоров.

При ремонте пути, сооружений и устройств должна обеспечиваться личная безопасность работающих, безопасность и график движения поездов.

Защита пути от снега, песчаных заносов и паводков

Бесперебойная работа железнодорожного транспорта в зимних условиях в значительной степени зависит от надежной защиты путей от снега, а также своевременной очистки их от снега во время снегопадов и метелей. Средства и способы защиты пути от снежных заносов выбирают в зависимости от интенсивности осадков.

Наиболее экономичным, долговечным и надежным видом защиты от снега являются естественные леса или защитные лесонасаждения, создаваемые на всей протяженности заносимых участков параллельно железнодорожным путям.

В местах, где лесонасаждения отсутствуют, и в стесненных условиях (в черте населенных пунктов) путь ограждают от заносов постоянными деревянными или железобетонными заборами высотой 4,2...6,7 м или переносными деревянными щитами размерами 2 х 1,5 или 2 х 2 м. Переносные щиты обычно переставляют несколько раз в течение зимы после того, как высота снежного вала достигнет 2/3 высоты щита.

В период интенсивных снегопадов и метелей возникает необходимость в очистке от снега. Со станций снег убирают снегоуборочными машинами и поездами СМ-2М, -4, -5, -6 и -7. На перегонах используют снегоочистители СДП-М2, а при больших заносах - фрезерные и роторные снегоочистители.

Стрелочные переводы очищают специальными стационарными пневматическими устройствами для обдувки стрелок с дистанционным управлением. Применяются также электро- и газообогревательные устройства.

На железнодорожных линиях, проходящих через районы песчаных и полупесчаных пустынь, необходимо предусматривать защиту пути от песчаных заносов. С этой целью пески закрепляют растительностью, покрывают битумной эмульсией, суглинком или глинистой суспензией с полимерами, а также возводят защитные искусственные сооружения в виде различных преград.


СООРУЖЕНИЯ И УСТРОЙСТВА ЭЛЕКТРОСНАБЖЕНИЯ

Железнодорожный транспорт потребляет около 7 % энергии, производимой электростанциями России. В основном она расходуется на обеспечение тяги поездов и питания нетяговых потребителей, к которым относятся станции, депо, мастерские и устройства регулирования движения поездов. Кроме того, к системе электроснабжения железной дороги могут быть подключены расположенные вблизи нее предприятия и небольшие населенные пункты.

Система электроснабжения электрифицированных дорог состоит из внешней (электростанции, районные трансформаторные подстанции, сети и линии электропередач) и тяговой (тяговые подстанции и электротяговая сеть) частей.

На тепловых, гидравлических и атомных электростанциях вырабатывается трехфазный переменный ток напряжением 6...21 кВ и частотой 50 Гц. Для передачи электрической энергии к потребителям напряжение на трансформаторных подстанциях повышают до 750 кВ в зависимости от протяженности высоковольтных линий электропередачи (ЛЭП). Вблизи мест потребления электроэнергии напряжение понижают до 110... 220 кВ и подают в районные сети, к которым наряду с другими потребителями подключены тяговые подстанции электрифицированных железных дорог и трансформаторные подстанции дорог с тепловозной тягой.

Нарушение электроснабжения железных дорог может привести к сбою в движении поездов. Чтобы обеспечить надежное питание электроэнергией тяговой сети железнодорожного транспорта, как правило, предусматривают ее подключение к двум независимым источникам. В отдельных случаях допускается питание от двух одноцепных линий электропередачи или одной двухцепной.

Тяговая сеть состоит из контактных и рельсовых проводов, представляющих собой соответственно питающую и отсасывающую линии. Участки контактной сети подсоединяют к соседним тяговым подстанциям. Это позволяет более равномерно загружать подстанции и контактную сеть, что в целом способствует снижению потерь электроэнергии в тяговой сети.

Системы тока. Напряжение в контактной сети

На железных дорогах России используют две системы электроснабжения: постоянного и однофазного переменного тока. Тяга на трехфазном переменном токе не получила распространения, поскольку технически сложно изолировать близко расположенные провода двух фаз контактной сети (третья фаза - рельсы).

Электрический подвижной состав обеспечивают тяговыми двигателями постоянного тока, так как предлагаемые модели двигателей переменного тока не отвечают предъявляемым требованиям по мощности и надежности. Поэтому железнодорожные линии снабжают системой однофазного переменного тока, а на локомотивах устанавливают специальное оборудование, преобразующее переменный ток в постоянный.

Правилами технической эксплуатации регламентированы номинальные уровни напряжения на токоприемниках электрического подвижного состава: 3 кВ - при постоянном токе и 25 кВ - при переменном. При этом определены допустимые с точки зрения обеспечения стабильности движения колебания напряжения: при постоянном токе - 2,7...4 кВ, при переменном - 21...29 кВ. На отдельных участках железных дорог допускается уровень напряжения не менее 2,4 кВ при постоянном токе и 19 кВ - при переменном.

Основными параметрами, характеризующими систему электроснабжения электрифицированных железных дорог, являются мощность тяговых подстанций, расстояние между ними и площадь сечения контактной подвески.

На железных дорогах, электрифицированных на постоянном токе, тяговые подстанции выполняют две функции: понижают напряжение подводимого трехфазного тока и преобразуют его в постоянный. Все оборудование, подающее переменный ток, размещается на открытых площадках, а выпрямители и вспомогательные агрегаты - в закрытых помещениях. От тяговых подстанций электроэнергия поступает в контактную сеть по питающей линии - фидеру.

Основными недостатками системы электроснабжения постоянного тока являются его полярность, относительно низкое напряжение и отсутствие возможности обеспечить полную электроизоляцию верхнего строения пути от нижнего. Рельсы, служащие проводниками тока разной полярности, и земляное полотно представляют собой систему, в которой возможна электрохимическая реакция, приводящая к коррозии металла. В результате снижается срок службы рельсов и искусственных сооружений. Для предотвращения этого применяют соответствующие защитные устройства (анодные заземлители, катодные станции и др.).

Из-за относительно низкого напряжения (U= 3 кВ) в системе постоянного тока по контактной сети к электрическому подвижному составу подводится мощность при большой силе тягового тока. Для этого тяговые подстанции размещают недалеко друг от друга (10... 20 км) и увеличивают площадь сечения проводов контактной подвески.

При переменном токе повышается эффективность использования электрической тяги, поскольку по контактной сети передается требуемая мощность при меньшей силе тока по сравнению с системой постоянного тока. Тяговые подстанции в этом случае располагаются на расстоянии 40... 60 км друг от друга. Их задачей является только понижение напряжения со ПО...220 до 25 кВ, поэтому их техническое оснащение проще и дешевле, чем у тяговых подстанций постоянного тока. Кроме того, в системе однофазного переменного тока площадь сечения проводов контактной сети примерно в два раза меньше. Для размещения оборудования на тяговых подстанциях при переменном токе используют открытые площадки. Однако конструкция локомотивов и электропоездов при переменном токе сложнее, а их стоимость выше.

В результате воздействия электромагнитного поля переменного тока на металлические конструкции и коммуникации, расположенные вдоль железнодорожных путей, в них появляется опасное для людей напряжение, а в линиях связи и автоматики возникают помехи. Поэтому применяют особые меры защиты сооружений. Затраты на такие защитные меры, как улучшение электрической изоляции между рельсами и землей, замена воздушных линий кабельными или радиорелейными, составляют 20...25 % общей стоимости работ по электрификации.

Стыкование контактных сетей линий, электрифицированных на постоянном и переменном токе, осуществляют на специальных железнодорожных станциях. В ряде случаев, когда создание таких станций представляется нецелесообразным, применяют электровозы двойного питания, работающие как на постоянном, так и на переменном токе.

ТЯГОВАЯ СЕТЬ

Тяговая сеть состоит из контактной (питающей) и рельсовой (отсасывающей) сетей. Рельсовая сеть представляет собой рельсы, имеющие стыковые электрические соединения. Контактная сеть - это совокупность проводов, конструкций и оборудования, обеспечивающих передачу электрической энергии от тяговых подстанций к токоприемникам электрического подвижного состава.

Основным требованием к конструкции контактной сети является обеспечение надежного постоянного контакта провода с токоприемником независимо от скорости движения поездов, климатических и атмосферных условий. В контактной сети нет дублируемых элементов, поэтому ее повреждение может повлечь за собой нарушение установленного графика движения поездов.

В соответствии с назначением электрифицированных путей используют простые и цепные воздушные контактные сети. На второстепенных станционных и деповских путях при сравнительно небольшой скорости движения может применяться простая контактная подвеска, представляющая собой свободно висящий провод, который закреплен на опорах.


При высокой скорости движения провисание контактного провода должно быть минимальным. Это обеспечивается конструкцией цепной подвески, в которой контактный провод между опорами подвешен не свободно, как в простой подвеске, а прикреплен к несущему тросу с помощью часто расположенных проволочных струн. Благодаря этому расстояние между поверхностью головки рельса и контактным проводом остается практически постоянным. Для цепной подвески в отличие от простой требуется меньше опор: они располагаются на расстоянии 70...75 м друг от друга.

В соответствии с ПТЭ высота контактного провода над поверхностью головки рельса на перегонах и станциях должна составлять не менее 5750 мм, а на переездах - 6000...6800 мм.

В горизонтальной плоскости контактный провод расположен зигзагообразно относительно оси пути с отклонением у каждой опоры на ±300 мм. Благодаря этому обеспечиваются его ветроустойчивость и равномерное изнашивание контактных пластин токоприемников.

Контактный провод изготавливают из твердотянутой электролитической меди. Он может иметь площадь сечения 85, 100 или 150 мм2. Наиболее распространены медные фасонные (МФ) провода. Для увеличения срока службы контактных проводов используют различные технические решения (сухая графитовая смазка медных накладок на полозе токоприемника и др.), снижающие их износ.



На строящихся магистральных железных дорогах применяют металлические (высотой до 15 м и более) и железобетонные (до 15,6 м) опоры контактной сети. Расстояние от оси крайнего пути до внутреннего края опор на прямых участках должно составлять не менее 3100 мм. На существующих линиях, оборудованных контактной сетью, и в особых случаях на электрифицируемых линиях допускается сокращение указанного расстояния до 2450 мм - на станциях и до 2750 мм - на перегонах.

Схема оснащения контактными проводами станционных путей зависит от их назначения и типа станции. Над стрелочными переводами контактная сеть имеет так называемые воздушные стрелки, образуемые пересечением двух контактных подвесок.

Надежное электроснабжение подвижного состава и безопасность работников, обслуживающих контактную сеть, обеспечиваются, в частности, ее секционированием (делением на отдельные участки) с помощью воздушных промежутков, нейтральных вставок (изолирующих соединений), а также секционных и врезных изоляторов.

Нейтральные вставки представляют собой несколько последовательно включенных воздушных промежутков, исключающих кратковременное электрическое соединение смежных секций контактной сети токоприемниками электрического подвижного состава в процессе его движения. Применение нейтральных вставок обязательно на участках переменного трехфазного тока с питанием секций от разных фаз.

Перегоны и промежуточные станции, а на крупных станциях группы электрифицированных путей выделяются в отдельные секции. Соединение или разъединение секций осуществляется посредством секционных разъединителей, размещаемых на опорах контактной сети.

Для защиты контактной сети от короткого замыкания между соседними тяговыми подстанциями располагают посты секционирования, оборудованные автоматическими выключателями. Кроме того, с целью обеспечения безопасности обслуживающего персонала и других лиц, а также защиты систем автоматики и телемеханики от токов короткого замыкания все металлические конструкции, непосредственно взаимодействующие с элементами контактной сети или находящиеся в радиусе 5 м от них, заземляют или оборудуют устройствами отключения. Для предохранения подземных металлических сооружений от повреждения блуждающими токами их изолируют от земли.

Снабжение электроэнергией линейных железнодорожных потребителей осуществляется посредством использования специальной трехфазной линии с напряжением 10 кВ, которая подвешивается на опорах контактной сети.

На электрифицированных железных дорогах по рельсам проходит тяговый ток. Для сокращения потерь электроэнергии и обеспечения нормального режима работы устройств автоматики и телемеханики на таких линиях предусматривают следующие особенности устройства верхнего строения пути:

·к головкам рельсов с наружной стороны колеи приваривают медные стыковые соединители, снижающие электрическое сопротивление рельсовых стыков;

·рельсы изолируют от шпал с помощью резиновых прокладок в случае применения железобетонных шпал и пропиткой деревянных шпал креозотом;

·используют щебеночный балласт, обладающий хорошими диэлектрическими свойствами, и между подошвой рельса и балластом обеспечивают зазор не менее 3 см;

·на линиях, оборудованных автоблокировкой и электрической централизацией, применяют изолирующие стыки (для того чтобы пропускать тяговый ток в обход их, устанавливают дроссель-трансформаторы или частотные фильтры).

ОБЩИЕ СВЕДЕНИЯ О ТЯГОВОМ ПОДВИЖНОМ СОСТАВЕ

Сравнение различных видов тяги

Движение поездов на железнодорожном транспорте осуществляется с помощью тягового подвижного состава. К нему относятся локомотивы и моторвагонный подвижной состав.

До середины 1950-х гг. основным средством тяги на железных дорогах нашей страны оставался паровоз, в котором в качестве силовой установки используются паровые котел и машина. При сжигании в топке паровоза топлива - твердого (уголь) или жидкого (нефть, мазут) - питательная вода в котле превращается в пар, который подается в машину, где происходит преобразование тепловой энергии в механическую. Одним из главных недостатков паровоза является низкий КПД, составляющий 5...7%.

В настоящее время в качестве локомотивов применяют тепловозы, оборудованные двигателями внутреннего сгорания (дизелями), и электровозы. Локомотивы с карбюраторными двигателями внутреннего сгорания небольшой мощности называют мотовозами, а локомотивы с газотурбинными установками - газотурбовозами.

Паровозы, тепловозы и газотурбовозы являются автономными локомотивами, так как механическая энергия, обеспечивающая движение поезда, вырабатывается в результате сжигания топлива на самом локомотиве.

Развитие транспортной техники привело к созданию неавтономных локомотивов и моторных вагонов. В отличие от автономного тягового подвижного состава первичная (электрическая) энергия подводится к ним от внешних источников. На самом локомотиве или в моторном вагоне осуществляется лишь преобразование электрической энергии в механическую энергию движения поезда.

Неавтономный тяговый подвижной состав получает питание от электростанций через тяговые подстанции и контактную сеть. При электрической тяге мощность тягового подвижного состава ограничена только мощностью внешних элементов системы электроснабжения, поэтому электрический подвижной состав может иметь большую мощность по сравнению с автономными локомотивами.

КПД тягового подвижного состава, характеризующий степень использования энергоносителя для получения полезной работы, тем выше, чем совершеннее первичная энергетическая установка.

КПД электрического подвижного состава изменяется в пределах 25...32 % в зависимости от вида электростанций (тепловые, атомные, гидравлические), поставляющих электроэнергию.

КПД современных автономных локомотивов и моторных вагонов дизель-поездов в зависимости от типа тепловозного двигателя достигает 29...31 %.

Эксплуатационные затраты на техническое обслуживание и текущий ремонт электровозов ниже, чем у тепловозов. По провозной способности электрифицированные линии превосходят неэлектрифицированные железные дороги. По сравнению с тепловозами электровозы имеют больший срок службы, их ремонт проще, они экологически чище.

Вместе с тем введение электрической тяги требует значительных капиталовложений в устройство линий электропередачи, тяговых подстанций и контактной сети. Однако затраты на железных дорогах с высокой интенсивностью движения быстро окупаются. Поэтому на железных дорогах России электрическая тяга нашла широкое применение на грузонапряженных линиях со сложным профилем и в пригородном пассажирском движении.

Классификация тягового подвижного состава

По роду работы локомотивы подразделяют на грузовые, пассажирские и маневровые. Мотор-вагонный подвижной состав, применяемый в пригородном движении, в отличие от локомотивов не только служит для тяги прицепных вагонов, но и используется для перевозки пассажиров.

Применение на электровозах и тепловозах с электрической передачей тяговых электродвигателей позволяет использовать как индивидуальный, так и групповой привод. При индивидуальном приводе каждая движущая колесная пара соединена со своим двигателем. При групповом приводе движущие колесные пары, размещенные в одной жесткой раме, приводятся в движение одним двигателем с использованием промежуточной зубчатой передачи.

Вес кузова современного локомотива передается на колесные пары через опоры (а иногда и вторичное рессорное подвешивание), рамы тележек, первичное рессорное подвешивание и буксы. Если число колесных пар не превышает шести, локомотив обычно выполняют с одним кузовом. Такой локомотив называется односекционным.

При большем числе колесных пар кузов локомотива оказывается чрезмерно длинным, что усложняет его конструкцию и затрудняет прохождение кривых участков пути. Поэтому многоосные локомотивы выполняют не с одним, а с несколькими самостоятельными кузовами-секциями, скрепленными друг с другом специальными шарнирными соединениями или автосцепками.

Расположение колесных пар в экипажной части локомотивов, род привода, передающего усилие от тяговых электродвигателей к колесным парам, и способ передачи тягового усилия принято выражать осевой характеристикой, в которой цифры соответствуют числу колесных пар. В осевой характеристике знак «-» означает, что тележки не сочленены, т.е. не связаны шарнирно, и тяговое усилие от движущих колесных пар к автосцепке передается через раму кузова, которая в этом случае имеет повышенную прочность. Знак «+» показывает, что тележки сочленены, и сила тяги передается через рамы тележек.

Если движущие колесные пары имеют индивидуальный привод, то к цифре, с помощью которой обозначено число осей, добавляют индекс «О». Так, электровоз с осевой характеристикой 3о + 3о представляет собой локомотив с двумя сочлененными трехосными тележками и индивидуальным приводом движущих колесных пар.

Для двухсекционных локомотивов, каждая секция которых может использоваться самостоятельно, перед осевой характеристикой одной секции, заключаемой в скобки, ставят цифру 2. Например, осевая характеристика 2(3о - 3о) относится к двухсекционному локомотиву, каждая секция которого имеет две несочлененные трехосные тележки и может работать самостоятельно. Если же секции локомотива самостоятельно не используются, то осевая характеристика приобретает вид 3о - 3о - 3о - 3о.

Различным по конструкции локомотивам и мотор-вагонным поездам принято присваивать разные обозначения в виде комбинаций букв и цифр. К основным обозначениям, характеризующим серии локомотивов и моторных вагонов, иногда добавляют буквенные индексы для указания дополнительных особенностей. Так, электровозы имеют буквенное обозначение ВЛ с цифрами (числами), например 10, 11, 23, 80, и индексами в виде малых букв (к, м, р, с, у, т и т.д.). Восьмиосный электровоз переменного (однофазного) тока с реостатным торможением имеет обозначение ВЛ80т, с рекуперативным торможением - ВЛ80р, электровоз постоянного тока с нагрузкой от колесной пары на рельсы, составляющей 23 т, - ВЛ23.

Для серий тепловозов с электрической передачей принято буквенное обозначение ТЭ, а с гидравлической - ТГ. В буквенное обозначение серий тепловозов, кроме грузовых, включают знак, характеризующий назначение локомотива: П - пассажирский, М - маневровый. Например, тепловоз ТЭП70 представляет собой пассажирский локомотив с электрической передачей.

Каждая секция мотор-вагонного поезда состоит из моторных и прицепных вагонов. Управляют таким поездом из кабины, расположенной в головном вагоне.

Современные электровозы и тепловозы могут совершать пробег между экипировками до 1200 км, а между техническими обслуживаниями - 1200... 2000 км. В зависимости от серии электровоза запас песка на нем составляет 1,6...6 м3.

На тепловозах запас экипировочных материалов, кг, на одну секцию составляет: топлива - до 7500, песка - до 2300, масла - до 1250 и воды - до 1580.

ЭЛЕКТРИЧЕСКИЙ ПОДВИЖНОЙ СОСТАВ

К электрическому подвижному составу относятся электровозы и электропоезда. В зависимости от рода применяемого тока различают электроподвижной состав постоянного и переменного тока, а также двойного питания.

Основные данные об электроподвижном составе отечественных железных дорог приведены в таблице.


Электрический подвижной состав включает в себя механическую часть, пневматическое и электрическое оборудование.

К механической части относятся кузов и тележки (экипажная часть).

Электрическое оборудование - это тяговые электродвигатели, аппараты управления и устройства защиты, токоприемники, вспомогательные электрические машины, аккумуляторная батарея, а на электровозах и электропоездах переменного тока и двойного питания - также тяговый трансформатор и преобразователи тока (выпрямители).

Кузов электровоза служит для размещения в нем кабины машиниста, электрических машин и аппаратов. Каркас кузова выполняют из металла, его наружная обшивка обычно состоит из стальных листов, а кабина машиниста имеет также внутреннюю обшивку с тепло- и звукоизоляцией.

У четырех- и шестиосных электровозов кабины машиниста расположены с обеих сторон кузова, а у двухсекционных - на одном конце каждой секции.

В кабине машиниста монтируют аппараты управления, контрольно-измерительные приборы и тормозные краны. В средней части кузова установлена высоковольтная камера с электрической аппаратурой силовых цепей. Вспомогательные машины - мотор-компрессоры, мотор-вентиляторы, генераторы тока управления - расположены между высоковольтной камерой и кабинами машиниста или переходами из секции в секцию.

Рама кузова опирается на тележки через специальные опорные устройства.

Тележка электровоза состоит из рамы, колесных пар с буксами, рессорного подвешивания и тормозного оборудования. К тележкам крепят тяговые электродвигатели. У электровозов с несочлененными тележками тяговые усилия передаются упряжными приборами (автосцепками), расположенными на раме кузова.

Рама тележки представляет собой конструкцию, состоящую из двух продольных балок - боковин и соединяющих их поперечных балок. Рама воспринимает вертикальную нагрузку от кузова и через рессорное подвешивание передает ее на колесные пары. Рама тележки, передающая также тяговые и тормозные усилия, должна обладать высокой прочностью.

Колесные пары воспринимают вес электровоза, на них передается крутящий момент тяговых электродвигателей. Кроме того, на колеса воздействуют удары от неровностей пути. Поэтому качеству изготовления колесных пар и содержанию их в исправном состоянии уделяют особое внимание. Колесную пару формируют из отдельных элементов: оси, двух колесных центров с бандажами (или безбандажных для цельнокатаных колес) и зубчатых колес тяговой передачи. Оси колесных пар заканчиваются шейками, на которые опираются буксы с роликовыми подшипниками.

Рессорное подвешивание является промежуточным звеном между рамой тележки и буксами. Оно служит для смягчения толчков и ударов при прохождении колесами неровностей пути и равномерного распределения нагрузки между колесными парами. Основные элементы рессорного подвешивания таковы: листовые рессоры, пружины, балансиры, амортизаторы различной конструкции и связующие элементы. Чтобы повысить эффективность рессорного подвешивания, в него вводят резиновые элементы, гасящие небольшие толчки и колебания.

На современных электровозах применяют, как правило, индивидуальный привод. При этом различают два вида подвески тяговых электродвигателей - опорно-осевую и рамную.

При опорно-осевой подвеске одна сторона остова тягового электродвигателя опирается на ось колесной пары с помощью двух моторно-осевых подшипников, а другая подвешена к поперечной балке рамы тележки с помощью пружинного устройства. Передача тягового усилия осуществляется через зубчатое зацепление.

При рамной подвеске двигатель расположен над осью колесной пары и прикреплен к раме тележки.

Такая подвеска позволяет уменьшить динамические силы, действующие на тяговые двигатели, особенно при прохождении колесной пары через неровности пути, а также облегчает доступ к двигателям для осмотра. В то же время при рамной подвеске усложняется передача тягового усилия от вала двигателя к колесной паре, так как необходимы специальные шарнирные или упругие элементы, компенсирующие перемещения колесной пары относительно рамы тележки.

В качестве тяговых электродвигателей на электровозах постоянного тока применяют в основном двигатели с последовательным возбуждением. Они рассчитаны на номинальное напряжение 1500 В.

Скорость движения электровоза постоянного тока можно регулировать изменением напряжения, подаваемого на тяговые двигатели, или соотношения тока якоря и тока возбуждения.

Напряжение варьируют включением последовательно с тяговыми электродвигателями резисторов и перегруппировкой тяговых электродвигателей. При перегруппировке двигателей их соединяют друг с другом последовательно, последовательно-параллелно или параллельно.

В последние годы выполнены работы по осуществлению импульсного регулирования напряжения с использованием управляемых полупроводниковых вентилей - тиристоров.

Основными аппаратами управления электровозом являются контроллеры машиниста, устанавливаемые в каждой кабине управления.

Контроллер непосредственно не связан с силовой цепью электровоза. Все переключения в силовой цепи осуществляются приборами, имеющими пневматические или электромагнитные приводы, связанные низковольтными электрическими цепями с контроллером.

Такая система позволяет управлять с одного поста несколькими локомотивами и исключает попадание высокого напряжения на аппараты управления. Включение и выключение вспомогательных машин, получающих питание от контактной сети, производится кнопками и тумблерами, установленными на панели в кабине машиниста.

Устройства защиты от перегрузок и коротких замыканий цепи тяговых электродвигателей представлены быстродействующим выключателем, дифференциальным реле и реле перегрузки.

Токоприемник соединяет силовую цепь электровоза с контактным проводом. Электровозы имеют по два токоприемника, при движении в нормальных условиях работает один из них. В некоторых случаях, например при разгоне с тяжелым составом или при гололеде, поднимают одновременно оба токоприемника.

К вспомогательным электрическим машинам электровоза относятся мотор-вентиляторы, мотор-компрессоры, мотор-генераторы и генераторы тока управления.

Мотор-вентилятор служит для воздушного охлаждения пусковых резисторов и тяговых электродвигателей, что способствует более полному использованию их мощности.

Мотор-компрессор питает тормозную систему поезда и пневматические устройства электровоза сжатым воздухом.

Мотор-генератор применяют на электровозах с рекуперативным торможением для питания обмоток возбуждения тяговых электродвигателей при их работе в режиме рекуперации.

Генератор тока управления предназначен для питания цепей управления, наружного и внутреннего освещения и заряда аккумуляторной батареи, являющейся резервным источником питания тех же цепей.

Вспомогательные машины электровоза приводятся в действие от контактной сети.

Трансформаторы выполняют с интенсивным циркуляционным масловоздушным охлаждением.

В качестве выпрямителей обычно применяют полупроводниковые (кремниевые) вентили - диоды, а в последнее время - также управляемые кремниевые вентили - тиристоры, которые позволяют отказаться от механических коммутирующих аппаратов.

Скорость электровоза переменного тока регулируют изменением напряжения, подводимого к тяговым электродвигателям, путем подключения их к различным выводам вторичной обмотки трансформатора или выводам автотрансформаторной обмотки. При таком способе регулирования отсутствует необходимость в использовании пусковых реостатов и перегруппировке двигателей. На электровозах переменного тока тяговые электродвигатели все время соединены друг с другом параллельно. Это улучшает тяговые свойства электровоза и упрощает электрические цепи.

Электровозы переменного тока помимо вспомогательного оборудования, применяемого на электровозах постоянного тока, оснащены мотор-насосами, обеспечивающими циркуляцию масла, которое охлаждает трансформатор, и мотор-вентилятором для охлаждения трансформатора и выпрямителя.

В качестве вспомогательных машин на электровозах переменного тока чаще всего применяют трехфазные асинхронные электродвигатели. Трехфазный ток получают из однофазного с помощью преобразователей, называемых расщепителями фаз.

В ряде случаев целесообразно применение электровозов двойного питания, у которых возможно переключение электрического оборудования для работы на участках постоянного и переменного тока. Двойное питание предусмотрено на электровозах ВЛ82 и ВЛ82М.

Для пригородного и междугородного пассажирского сообщения на электрифицированных линиях используют электропоезда, состоящие из моторных и прицепных вагонов. В зависимости от пассажиропотоков поезда формируют из 4, 6, 8, 10 или 12 вагонов.


Механическая часть вагона состоит из кузова, тележек, сцепных приборов и тормозного оборудования. Сцепные приборы размещают на раме кузова. На моторных вагонах электропоездов обычно устанавливают по четыре тяговых электродвигателя с рамной подвеской. В отличие от электровозных тяговые электродвигатели моторных вагонов имеют вентилятор, расположенный на валу якоря.

Электрическое оборудование электропоездов в основном аналогично оборудованию электровозов. Чтобы увеличить площадь для перевозки пассажиров, его размещают под кузовом и частично на крыше вагона. Управляют электропоездом с помощью контроллера из кабины машиниста. Принцип управления тяговыми электродвигателями тот же, что и на электровозе, однако в электропоездах предусматривают устройство автоматического пуска, в котором специальное реле ускорения обеспечивает постепенное выключение пусковых резисторов или переключение выводов вторичной обмотки трансформатора одновременно с поддержанием заданного пускового тока.

В 1975 г. Рижским вагоностроительным заводом начат выпуск 14-вагонных электропоездов постоянного тока ЭР200, имеющих конструкционную скорость 200 км/ч. Такие электропоезда, предназначенные для пассажирского сообщения на высокоскоростных железных дорогах, в настоящее время курсируют на линии Санкт-Петербург-Москва.


В последние годы в России проводится разработка нового электроподвижного состава, отвечающего современным требованиям.

С 1994 г. на ряде железных дорог, электрифицированных на постоянном токе, эксплуатируются пригородные поезда производства Демиховского (ЭД2Т) и Торжокского (ЭТ2) вагоностроительных заводов, а с 1996 г. - электропоезда переменного тока ЭД9Т.

В 1997 г. на Демиховском вагоностроительном заводе начат выпуск электропоездов ЭД4 и ЭД4М. На Тихвинском заводе «Трансмаш» построен первый электропоезд «Сокол», рассчитанный на скорость до 250 км/ч. В 2003 г. завершено создание электропоезда нового поколения ЭМ4 «Спутник».

На Новочеркасском электровозостроительном заводе в 2000-х гг. начат выпуск новых электровозов серий ЭП1, ЭП2, ЭП100 и ЭП300.

Проводятся научно-исследовательские работы по созданию электропоездов нового поколения с применением асинхронных тяговых электродвигателей и импульсным регулированием скоростного движения.

АВТОНОМНЫЙ ТЯГОВЫЙ ПОДВИЖНОЙ СОСТАВ

К автономному тяговому подвижному составу относятся тепловозы, дизель-поезда, автомотрисы, мотовозы и газотурбовозы.

По назначению тепловозы подразделяют на грузовые, пассажирские и маневровые.

Грузовой магистральный тепловоз

Пассажирский тепловоз

Маневровый тепловоз

Тепловоз включает в себя следующие основные части: первичный двигатель, передачу, кузов, экипажную часть, аппаратуру управления и вспомогательное оборудование.

Первичным двигателем на тепловозе является дизель. Чтобы привести во вращение колесные пары тепловоза от вала дизеля, требуется специальная передача.

На тепловозах применяют двухтактные бескомпрессорные двигатели внутреннего сгорания. Мощность двигателя пропорциональна количеству сжигаемого в цилиндрах топлива, однако чем значительнее его расход, тем больше нужно подать воздуха. В связи с этим в двигателях современных тепловозов воздух в цилиндры нагнетается под давлением 135... 240 кПа, что существенно увеличивает мощность двигателей. Такой способ заряда цилиндра свежим воздухом называется наддувом.

Передача обеспечивает трогание тепловоза с места и реализацию полезной мощности дизеля во всем диапазоне значений скорости движения. Передача может быть электрической, механической или гидравлической.

Наиболее широко применяется электрическая передача постоянного или постоянно-переменного тока. В первом случае коленчатый вал дизеля вращает якорь тягового генератора, преобразуя механическую энергию в электрическую, а генератор вырабатывает постоянный ток, который поступает в тяговые электродвигатели. Вращение их якорей с помощью тяговых редукторов передается движущим колесным парам. При этом электрическая энергия, получаемая от тягового генератора, вновь преобразуется в механическую.

В передаче переменно-постоянного тока используются синхронный тяговый генератор переменного тока и тяговые электродвигатели постоянного тока. Вырабатываемый синхронным тяговым генератором переменный ток выпрямляется, т. е. преобразуется в постоянный ток с помощью специальной выпрямительной установки на основе силовых полупроводниковых (кремниевых) вентилей.

На всех отечественных тепловозах постоянного тока осуществляется электрический пуск дизеля от аккумуляторной батареи.

При пуске дизеля тяговый генератор постоянного тока работает в режиме электродвигателя, потребляет электрическую энергию от батареи и приводит во вращение коленчатый вал. На тепловозах с передачей переменно-постоянного тока для пуска дизеля устанавливают стартерный электродвигатель.

Механическая передача подобна автомобильной. Она состоит из шестеренчатой коробки скоростей, реверсивного устройства и муфты сцепления. Эта передача проста по устройству и имеет высокий КПД. Однако при переключении скоростей резко уменьшается, а затем возрастает сила тяги, что вызывает сильные рывки состава. Поэтому механическая передача применяется лишь в мотовозах, автомотрисах и дизельных поездах сравнительно небольшой мощности.

Гидравлическая передача дешевле и проще электрической. Основными элементами гидравлической передачи являются гидротрансформаторы и гидромуфты. Оба эти агрегата представляют собой сочетание центробежного насоса, соединенного с валом двигателя, и гидравлической турбины, работающей за счет энергии струи жидкости, нагнетаемой насосом.


Вал 2 центробежного насоса соединен с валом 1 ведущего двигателя. При работе двигателя насос засасывает жидкость в трубу 10 из камеры 9 и подает ее через направляющий аппарат по трубе 3 к турбине 4, вал 5 которой связан с приводным механизмом. Жидкость из турбины по трубе 6 попадает в камеру 7, которая соединена с всасывающей камерой 9 трубой 8. Из камеры 9 жидкость снова засасывается центробежным насосом и повторяет описанный выше путь. В гидромуфте или гидротрансформаторе насосное колесо приводится во вращательное движение с помощью вала дизеля, а турбинное колесо вращается за счет энергии потока рабочей жидкости, нагнетаемой рабочим колесом.

Маневровый тепловоз с гидравлической передачей

На главной раме, представляющей собой жесткую и прочную сварную конструкцию, размещаются кабина, кузов, силовое и вспомогательное оборудование тепловоза. Тележки имеют раму, опоры, буксы, колесные пары, рессорное подвешивание и тормозное оборудование.

Аппаратом управления тепловозом является контроллер, расположенный на пульте машиниста. Контроллер имеет главную рукоятку для включения электрических цепей управления и регулирования частоты вращения вала дизеля, а также реверсивную рукоятку для изменения направления движения тепловоза.

К вспомогательному оборудованию относятся топливная система, системы смазки и охлаждения и др.


Источник: http://bibliofond.ru/view.aspx?id=602679



Рекомендуем посмотреть ещё:


Закрыть ... [X]

Приложения для вышивки - запись пользователя Наталья (nata_emelyanova) Мастер класс одежды для кукол монстер хай

Математика и рисование как они связаны Математика и рисование как они связаны Математика и рисование как они связаны Математика и рисование как они связаны Математика и рисование как они связаны Математика и рисование как они связаны Математика и рисование как они связаны Математика и рисование как они связаны Математика и рисование как они связаны

Похожие новости